
…reloaded

@xabiugarte

Malware Research Team
@

Motivation
Design principles /
architecture
Features
Use cases
Future work

Dynamic Binary Inst rumentat ion

Techniques to “trace” the execution of a
binary (or system)
Monitor different events

E.g.: An instruction is executed, a
memory address is written…

Allow to write our own instrumentation
code

Many instrumentation frameworks…

PIN

DynamoRIO

WinAppDbg

PyKD

PANDA

TEMU/DECAF

S2E

Avatar

PyDbg
Unicorn

DynInst
Frida

Technical aspects
Single process/binary, or whole system?
What events does it hook / instrument?
Transparency?

Practical aspects
How ‘easy’ is it to use?
Programming languages?

Other aspects
How often is it ‘updated’?
Community?
Is the project even alive?

Frameworks based on emulat ion

Full system instrumentation
Full system == …

Monitors all the operating system

Allows to instrument / inspect kernel
Allows to monitor inter-process
interaction

QEMU

Started using TEMU and Decaf
Based on QEMU

User-mode emulation
Hypervisor (KVM)
Full system emulation

Emulate CPU, BIOS, memory, devices
Boot and fully emulate unmodified O.S.

Tiny Code Generator (TCG)

TCG

Guest machine code
 (ARM,
 MIPS,
 PowerPC,
 x86…)

TCG code

Translated blocks

Virtual CPU
Virtual memory
Virtual devices

TCG

Guest machine code
 (ARM,
 MIPS,
 PowerPC,
 x86…)

TCG code
insert callbacks to our

instrumentation

Virtual CPU
Virtual memory
Virtual devices

Translated blocks

TCG

Guest machine code
 (ARM,
 MIPS,
 PowerPC,
 x86…)

TCG code
insert callbacks to our

instrumentation

Virtual CPU
Virtual memory
Virtual devices

Our callback
function

Translated blocks

QEMU

“Transparent” instrumentation
Emulated memory is not modified
No agent needed

Some shor tcomings…

PANDA, DECAF… Why reinvent the wheel?
Plugins are coded in C/C++
I prefer python!

Faster development
Great libraries

Complex QEMU modifications
Risk of not updating frequently
QEMU evolves, vulnerabilities get fixed…

In te l VT

What about hardware assisted
virtualization?

E.g.: KVM

Faster, but…

Target & host arch. must be the same
Host O.S. dependent

(e.g.: KVM won’t run on Windows)

So, what does PyREBox offer?

IPython shell
Inspect the system (memory/registers)
Set breakpoints…
In a nutshell: interactive analysis

Scripting (python)
Callbacks on events (execution,
memory, o.s. events…)
Define new commands

Scr ipt ing

Loaded or unloaded at any moment
Callbacks (on demand, dynamically)

Instruction/block begin/end
Memory read/write
Specific opcode execution
Process create/remove
Module load/unload
TLB flush / context change

Scr ipt ing

Can start a shell at any time
start_shell()

Can read/write registers, memory
Can set breakpoints
Use any Python library!

Agent , for automat ion

File transfer and execution

Communication with host via invalid opcodes

Windows and Linux guests supported, 32 & 64 bits

From shell or scripts:
agent.copy_file(src_path, dest_path)
agent.execute_file(path, args=[], env={},
exit_afterwards=False)

Compat ib i l i ty, documentat ion…

Compiles and runs (tested):
Linux
Windows (thanks to linux subsystem)
Docker is supported

Supports Windows and Linux guests
32 and 64 bit (intel)

Example scripts provided
Complete PyREBox documentation

https://pyrebox.readthedocs.io/en/latest/

https://pyrebox.readthedocs.io/en/latest/

Updated

Updated regularly
Currently, latest stable QEMU version

It is free!! (as in freedom)
https://github.com/Cisco-Talos/pyrebox

General Public License

: - (

No support for…
Taint analysis (PANDA, DECAF)
Record & replay (PANDA)
Other architectures (ARM, MIPS…)

But it will, hopefully, in the future

Design

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API

Listen to events

Keep
Instrumentation
Simple
Stupid

Inspect  
system

VMI

We see the system as a raw CPU!!

Only memory, registers, devices
Sequence of instructions
Processes, threads, handles, libraries…

Abstractions of the O.S.

Virtual Machine Introspection
Understand these abstractions

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API

+ Basic routines in C/C++

Tr iggers

Python can be prohibitively expensive
Instruction begin, memory read…

Triggers
C/C++ snippets
Compiled as shared libraries (.so)
Loaded at runtime
Returns 0 if callback should not be delivered, 1
otherwise.

int trigger(callback_handle_t handle, callback_params_t params){
return should_deliver;
}

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API

Callback

Callback

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API

?

Callback

.so

Trigger (plugin) gets callback
notification.
Decides whether it must be
delivered or not

Demo time!

PyREBox shel l

QEMU monitor
Regular QEMU
commands

E.g. Attach a USB

PyREBox shell
 Pauses the guest
Inspect / modify

Built-in commands
Run volatility commands
Run custom commands
Run python code (ipython)
Autocompletion, syntax

$sh

Use cases

Malware Moni tor

Set of PyREBox scripts
Presented at HITB Amsterdam
Sample execution automation, + analysis

API tracer
• Can extract parameters

Memory dumper
Code coverage
Memory monitor

Track injections, droppers, unpacked shellcodes…

Gener ic Unpacker

Extremely simple generic unpacker
~250 LoC script
Heuristics to track W+X at page level
Leverages triggers to reduce overhead
Leverages volatility for memory dump / memory info
Fully automates sample execution

Releasing the code today!

Gener ic Unpacker

Simple model
Monitor memory writes and memory execution

Page level

W
X

Current layer: 0

Gener ic Unpacker

Simple model
Monitor memory writes and memory execution

Page level

W
X

Current layer: 0

0 0 0

Gener ic Unpacker

Simple model
Monitor memory writes and memory execution

Page level

W
X

Current layer: 0

0 0 0

0 0 0

W

Gener ic Unpacker

Simple model
Monitor memory writes and memory execution

Page level

W
X

Current layer: 0

0 0 0

0 0 0

X DUMP HERE!

Gener ic Unpacker

Simple model
Monitor memory writes and memory execution

Page level

W
X

Current layer: 0

0 0 0

0 0 0

1 1 1

Gener ic Unpacker

Simple model
Monitor memory writes and memory execution

Page level

W
X

Current layer: 0

0 0 0

0 0 0

1 1 1

W

1 1 1 1 1 1

Gener ic Unpacker

Simple model
Monitor memory writes and memory execution

Page level

W
X

Current layer: 0

0 0 0

0 0 0

1 1 1

1 1 1 1 1 1

X

2 2 2 2 2 2

DUMP HERE!

Demo: Dr idex

MZ…

.text

.data

[…]

[shellcode]

MZ…

.text

.data

[…]

Layer 1

Layer 2Layer 0

Explo i t analys is helpers

(Demo 2)
Shadow stack

Detection of stack overflows

(Demo 3)
Stack pivoting detector

For instance: ROP chain on Heap
Shellcode detector

Code being executed outside module address space
Heap, Stack…

Shadow stack

Monitor all CALL instructions
Keep track of return addresses (push to shadow
stack)

Monitor all RET instructions
Check if return address is in the shadow stack

If a return address is not a return point:
Stop execution, start a shell:

Shellcode?
ROP chain / return to libc?

Demo: MS Word 2016

Microsoft Word (Equation Editor) CVE-2017-11882
Stack based buffer overflow
32 bit process, no ASLR, no stack protection!
Trivial to exploit

Stack p ivot ing detector

Monitor modifications to ESP/RSP
If ESP/RSP shifted > X bytes

Check if ESP/RSP points outside stack
ROP chain should be there

Need to consider:
Each thread has a stack
User mode <-> Kernel mode

Shel lcode detector

Monitor modifications to EIP
If EIP/RIP shifted > X bytes

Check if EIP points outside of a module
Shellcode may be there

FP prone
Build a whitelist per application?

Demo - Foxi t Reader

Foxit Reader 7.1.5 (No CVE?)
Reported by Sascha Schirra in 2015
PoC on exploit-db

PNG parsing vulnerability
PNG to PDF conversion

Heap buffer overflow
Partial overwrite of pointer to object

Demo - Foxi t Reader

Foxit Reader 7.1.5
(1) Overwrite 2 bytes on object pointer
(2) Object is dereferenced, vtable is dereferenced,
function is called, we have control!
(3) JOP gadget to do stack pivot to HEAP
(4) ROP chain on HEAP (controlled buffer)

Disables DEP
Jumps into shellcode

(5) Shellcode

Whats next?

What ’s next?

Support for additional architectures (ARM / MIPS)

Debugging backend for r2 / IDA
R2 as a disassembler inside PyREBox

Support for other backends (PANDA?)

Questions?

talosintelligence.com
blog.talosintel.com

@talossecurity

